Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targeted pharmacologic immunomodulation for inborn errors of immunity.

Identifieur interne : 000033 ( Main/Exploration ); précédent : 000032; suivant : 000034

Targeted pharmacologic immunomodulation for inborn errors of immunity.

Auteurs : Keith A. Sacco [États-Unis] ; Michael Stack [États-Unis] ; Luigi D. Notarangelo [États-Unis]

Source :

RBID : pubmed:32738057

Abstract

Inborn errors of immunity consist of over 400 known single gene disorders that may manifest with infection susceptibility, autoimmunity, autoinflammation, hypersensitivity and cancer predisposition. Most patients are treated symptomatically with immunoglobulin replacement, prophylactic antimicrobials or broad immunosuppression pertaining to their disease phenotype. Other than haematopoietic stem cell transplantation, the aforementioned treatments do little to alter disease morbidity or mortality. Further, many patients may not be transplant candidates. In this review, we describe monogenic disorders affecting leucocyte migration, disorders of immune synapse formation and dysregulation of immune cell signal transduction. We highlight the use of off-label small molecules and biologics mechanistically targeted to altered disease pathophysiology of such diseases.

DOI: 10.1111/bcp.14509
PubMed: 32738057


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targeted pharmacologic immunomodulation for inborn errors of immunity.</title>
<author>
<name sortKey="Sacco, Keith A" sort="Sacco, Keith A" uniqKey="Sacco K" first="Keith A" last="Sacco">Keith A. Sacco</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stack, Michael" sort="Stack, Michael" uniqKey="Stack M" first="Michael" last="Stack">Michael Stack</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Notarangelo, Luigi D" sort="Notarangelo, Luigi D" uniqKey="Notarangelo L" first="Luigi D" last="Notarangelo">Luigi D. Notarangelo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32738057</idno>
<idno type="pmid">32738057</idno>
<idno type="doi">10.1111/bcp.14509</idno>
<idno type="wicri:Area/Main/Corpus">000035</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000035</idno>
<idno type="wicri:Area/Main/Curation">000035</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000035</idno>
<idno type="wicri:Area/Main/Exploration">000035</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Targeted pharmacologic immunomodulation for inborn errors of immunity.</title>
<author>
<name sortKey="Sacco, Keith A" sort="Sacco, Keith A" uniqKey="Sacco K" first="Keith A" last="Sacco">Keith A. Sacco</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stack, Michael" sort="Stack, Michael" uniqKey="Stack M" first="Michael" last="Stack">Michael Stack</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Notarangelo, Luigi D" sort="Notarangelo, Luigi D" uniqKey="Notarangelo L" first="Luigi D" last="Notarangelo">Luigi D. Notarangelo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">British journal of clinical pharmacology</title>
<idno type="eISSN">1365-2125</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Inborn errors of immunity consist of over 400 known single gene disorders that may manifest with infection susceptibility, autoimmunity, autoinflammation, hypersensitivity and cancer predisposition. Most patients are treated symptomatically with immunoglobulin replacement, prophylactic antimicrobials or broad immunosuppression pertaining to their disease phenotype. Other than haematopoietic stem cell transplantation, the aforementioned treatments do little to alter disease morbidity or mortality. Further, many patients may not be transplant candidates. In this review, we describe monogenic disorders affecting leucocyte migration, disorders of immune synapse formation and dysregulation of immune cell signal transduction. We highlight the use of off-label small molecules and biologics mechanistically targeted to altered disease pathophysiology of such diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32738057</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2125</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>British journal of clinical pharmacology</Title>
<ISOAbbreviation>Br J Clin Pharmacol</ISOAbbreviation>
</Journal>
<ArticleTitle>Targeted pharmacologic immunomodulation for inborn errors of immunity.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/bcp.14509</ELocationID>
<Abstract>
<AbstractText>Inborn errors of immunity consist of over 400 known single gene disorders that may manifest with infection susceptibility, autoimmunity, autoinflammation, hypersensitivity and cancer predisposition. Most patients are treated symptomatically with immunoglobulin replacement, prophylactic antimicrobials or broad immunosuppression pertaining to their disease phenotype. Other than haematopoietic stem cell transplantation, the aforementioned treatments do little to alter disease morbidity or mortality. Further, many patients may not be transplant candidates. In this review, we describe monogenic disorders affecting leucocyte migration, disorders of immune synapse formation and dysregulation of immune cell signal transduction. We highlight the use of off-label small molecules and biologics mechanistically targeted to altered disease pathophysiology of such diseases.</AbstractText>
<CopyrightInformation>Published 2020. This article is a U.S. Government work and is in the public domain in the USA.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sacco</LastName>
<ForeName>Keith A</ForeName>
<Initials>KA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8189-7769</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stack</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Notarangelo</LastName>
<ForeName>Luigi D</ForeName>
<Initials>LD</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Division of Intramural Research, National Institute of Allergy and Infectious Diseases</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Br J Clin Pharmacol</MedlineTA>
<NlmUniqueID>7503323</NlmUniqueID>
<ISSNLinking>0306-5251</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biologics</Keyword>
<Keyword MajorTopicYN="N">immunodeficiency</Keyword>
<Keyword MajorTopicYN="N">immunomodulation</Keyword>
<Keyword MajorTopicYN="N">inborn errors of immunity</Keyword>
<Keyword MajorTopicYN="N">jakinib</Keyword>
<Keyword MajorTopicYN="N">personalized medicine</Keyword>
<Keyword MajorTopicYN="N">rapamycin</Keyword>
<Keyword MajorTopicYN="N">targeted treatment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32738057</ArticleId>
<ArticleId IdType="doi">10.1111/bcp.14509</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Rothenberg EV, Kueh HY, Yui MA, Zhang JA. Hematopoiesis and T-cell specification as a model developmental system. Immunol Rev. 2016;271(1):72-97.</Citation>
</Reference>
<Reference>
<Citation>Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24-64.</Citation>
</Reference>
<Reference>
<Citation>Heimall JR, Hagin D, Hajjar J, et al. Use of genetic testing for primary immunodeficiency patients. J Clin Immunol. 2018;38(3):320-329.</Citation>
</Reference>
<Reference>
<Citation>Janeway CA. Gamma globulin and Agammaglobulinemia. Clin Proc Child Hosp Dist Columbia. 1964;20:61-72.</Citation>
</Reference>
<Reference>
<Citation>Gitlin D, Hitzig WH, Janeway CA. Multiple serum protein deficiencies in congenital and acquired agammaglobulinemia. J Clin Invest. 1956;35(11):1199-1204.</Citation>
</Reference>
<Reference>
<Citation>Rosen FS, Gotoff SP, Craig JM, Ritchie J, Janeway CA. Further observations on the Swiss type of agammaglobulinemia (alymphocytosis). The effect of syngeneic bone-marrow cells. N Engl J Med. 1966;274(1):18-21.</Citation>
</Reference>
<Reference>
<Citation>Ameratunga R, Ahn Y, Steele R, Woon ST. The natural history of untreated primary Hypogammaglobulinemia in adults: implications for the diagnosis and treatment of common variable immunodeficiency disorders (CVID). Front Immunol. 2019;10:1541. https://doi.org/10.3389/fimmu.2019.02678</Citation>
</Reference>
<Reference>
<Citation>Baloh C, Reddy A, Henson M, Prince K, Buckley R, Lugar P. 30-year review of pediatric- and adult-onset CVID: clinical correlates and prognostic indicators. J Clin Immunol. 2019;39(7):678-687.</Citation>
</Reference>
<Reference>
<Citation>Freeman AF, Holland SM. Antimicrobial prophylaxis for primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2009;9(6):525-530.</Citation>
</Reference>
<Reference>
<Citation>Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650-1657.</Citation>
</Reference>
<Reference>
<Citation>Notarangelo LD, Fleisher TA. Targeted strategies directed at the molecular defect: toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol. 2017;139(3):715-723.</Citation>
</Reference>
<Reference>
<Citation>Pai SY. Treatment of primary immunodeficiency with allogeneic transplant and gene therapy. Hematology am Soc Hematol Educ Program. 2019;2019(1):457-465.</Citation>
</Reference>
<Reference>
<Citation>Fox TA, Chakraverty R, Burns S, et al. Successful outcome following allogeneic hematopoietic stem cell transplantation in adults with primary immunodeficiency. Blood. 2018;131(8):917-931.</Citation>
</Reference>
<Reference>
<Citation>Grimbacher B, Party ERW. The European Society for Immunodeficiencies (ESID) registry 2014. Clin Exp Immunol. 2014;178(Suppl 1):18-20.</Citation>
</Reference>
<Reference>
<Citation>Brodszki N, Frazer-Abel A, Grumach AS, et al. European Society for Immunodeficiencies (ESID) and European reference network on rare primary immunodeficiency, autoinflammatory and autoimmune diseases (ERN RITA) complement guideline: deficiencies, diagnosis, and management. J Clin Immunol. 2020;40(4):576-591.</Citation>
</Reference>
<Reference>
<Citation>Lyons JJ, Milner JD. The clinical and mechanistic intersection of primary atopic disorders and inborn errors of growth and metabolism. Immunol Rev. 2019;287(1):135-144.</Citation>
</Reference>
<Reference>
<Citation>Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med. 2018;215(4):1009-1022.</Citation>
</Reference>
<Reference>
<Citation>Cohen JM, Sebire NJ, Harvey J, et al. Successful treatment of lymphoproliferative disease complicating primary immunodeficiency/immunodysregulatory disorders with reduced-intensity allogeneic stem-cell transplantation. Blood. 2007;110(6):2209-2214. https://doi.org/10.1182/blood-2006-12-062174</Citation>
</Reference>
<Reference>
<Citation>Hauck F, Gennery AR, Seidel MG. Editorial: the relationship between cancer predisposition and primary immunodeficiency. Front Immunol. 2019;10:1781. https://doi.org/10.3389/fimmu.2019.01781</Citation>
</Reference>
<Reference>
<Citation>Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R7-R28.</Citation>
</Reference>
<Reference>
<Citation>McEver RP, Moore KL, Cummings RD. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem. 1995;270(19):11025-11028.</Citation>
</Reference>
<Reference>
<Citation>Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol. 2000;12(3):336-341.</Citation>
</Reference>
<Reference>
<Citation>Schall TJ, Bacon KB. Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol. 1994;6(6):865-873.</Citation>
</Reference>
<Reference>
<Citation>Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977-988.</Citation>
</Reference>
<Reference>
<Citation>Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity. 1999;10(4):463-471.</Citation>
</Reference>
<Reference>
<Citation>Murphy PM, Heusinkveld L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine. 2018;109:2-10.</Citation>
</Reference>
<Reference>
<Citation>Hernandez PA, Gorlin RJ, Lukens JN, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34(1):70-74.</Citation>
</Reference>
<Reference>
<Citation>McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev. 2019;287(1):91-102.</Citation>
</Reference>
<Reference>
<Citation>Kawai T, Malech HL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol. 2009;16(1):20-26.</Citation>
</Reference>
<Reference>
<Citation>Gulino AV, Moratto D, Sozzani S, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood. 2004;104(2):444-452.</Citation>
</Reference>
<Reference>
<Citation>Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM syndrome: from pathogenesis towards personalized medicine and cure. J Clin Immunol. 2019;39(6):532-556.</Citation>
</Reference>
<Reference>
<Citation>Dotta L, Notarangelo LD, Moratto D, et al. Long-term outcome of WHIM syndrome in 18 patients: high risk of lung disease and HPV-related malignancies. J Allergy Clin Immunol Pract. 2019;7(5):1568-1577.</Citation>
</Reference>
<Reference>
<Citation>McDermott DH, Liu Q, Velez D, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood. 2014;123(15):2308-2316.</Citation>
</Reference>
<Reference>
<Citation>McDermott DH, Pastrana DV, Calvo KR, et al. Plerixafor for the treatment of WHIM syndrome. N Engl J Med. 2019;380(2):163-170.</Citation>
</Reference>
<Reference>
<Citation>Plerixafor Versus G-CSF in the Treatment of People With WHIM Syndrome [Internet]. 2020 [cited 2020 March 20].</Citation>
</Reference>
<Reference>
<Citation>Parish CR. The role of heparan sulphate in inflammation. Nat Rev Immunol. 2006;6(9):633-643.</Citation>
</Reference>
<Reference>
<Citation>Munro JM, Lo SK, Corless C, et al. Expression of sialyl-Lewis X, an E-selectin ligand, in inflammation, immune processes, and lymphoid tissues. Am J Pathol. 1992;141(6):1397-1408.</Citation>
</Reference>
<Reference>
<Citation>Issekutz AC, Chuluyan HE, Lopes N. CD11/CD18-independent transendothelial migration of human polymorphonuclear leukocytes and monocytes: involvement of distinct and unique mechanisms. J Leukoc Biol. 1995;57(4):553-561.</Citation>
</Reference>
<Reference>
<Citation>Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250(1):50-55.</Citation>
</Reference>
<Reference>
<Citation>Moutsopoulos NM, Konkel J, Sarmadi M, et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med. 2014;6(229):229ra40. https://doi.org/10.1126/scitranslmed.3007696</Citation>
</Reference>
<Reference>
<Citation>Hajishengallis G, Moutsopoulos NM, Hajishengallis E, Chavakis T. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol. 2016;28(2):146-158.</Citation>
</Reference>
<Reference>
<Citation>McInnes IB, Kavanaugh A, Gottlieb AB, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382(9894):780-789.</Citation>
</Reference>
<Reference>
<Citation>Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665-1674.</Citation>
</Reference>
<Reference>
<Citation>Moutsopoulos NM, Zerbe CS, Wild T, et al. Interleukin-12 and Interleukin-23 blockade in leukocyte adhesion deficiency type 1. N Engl J Med. 2017;376(12):1141-1146.</Citation>
</Reference>
<Reference>
<Citation>Ustekinumab (Anti-IL-12/23p40 Monoclonal Antibody) in Patients With Leukocyte Adhesion Deficiency Type 1 (LAD1) Who Have Inflammatory Pathology [Internet]. 2019 [cited March 11 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT03366142</Citation>
</Reference>
<Reference>
<Citation>Thaci D, Blauvelt A, Reich K, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J am Acad Dermatol. 2015;73(3):400-409.</Citation>
</Reference>
<Reference>
<Citation>Diels J, Thilakarathne P, Cameron C, McElligott S, Schubert A, Puig L. Adjusted treatment COMPArisons between guSelkumab and uStekinumab for treatment of moderate-to-severe plaque psoriasis: the COMPASS analysis. Br J Dermatol. 2019. https://doi.org/10.1111/bjd.18634</Citation>
</Reference>
<Reference>
<Citation>Yamane H, Paul WE. Early signalling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets. Immunol Rev. 2013;252(1):12-23.</Citation>
</Reference>
<Reference>
<Citation>Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med. 1996;183(6):2533-2540.</Citation>
</Reference>
<Reference>
<Citation>Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11(12):852-863.</Citation>
</Reference>
<Reference>
<Citation>Wang CJ, Heuts F, Ovcinnikovs V, et al. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc Natl Acad Sci U S a. 2015;112(2):524-529.</Citation>
</Reference>
<Reference>
<Citation>Yuan J, Adamow M, Ginsberg BA, et al. Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S a. 2011;108(40):16723-16728.</Citation>
</Reference>
<Reference>
<Citation>Kuehn HS, Ouyang W, Lo B, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623-1627.</Citation>
</Reference>
<Reference>
<Citation>Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410-1416.</Citation>
</Reference>
<Reference>
<Citation>Sun D, Heimall J. Disorders of CTLA-4 expression, how they lead to CVID and dysregulated immune responses. Curr Opin Allergy Clin Immunol. 2019;19(6):578-585.</Citation>
</Reference>
<Reference>
<Citation>Uzel G, Karanovic D, Su H, et al. Management of Cytopenias in CTLA4 Haploinsufficiency using Abatacept and Sirolimus. Blood. 2018;132(Supplement 1):2409.</Citation>
</Reference>
<Reference>
<Citation>Herrero-Beaumont G, Martinez Calatrava MJ, Castaneda S. Abatacept mechanism of action: concordance with its clinical profile. Reumatol Clin. 2012;8(2):78-83.</Citation>
</Reference>
<Reference>
<Citation>Castaneda S, Martinez Calatrava MJ, Herrero-Beaumont G. Alternatives in the treatment of rheumatoid arthritis: reasons for using abatacept. Rev Clin Esp. 2012;212(5):244-254.</Citation>
</Reference>
<Reference>
<Citation>Noisette A, Hochberg MC. Abatacept for the treatment of adults with psoriatic arthritis: patient selection and perspectives. Psoriasis (Auckl). 2018;8:31-39.</Citation>
</Reference>
<Reference>
<Citation>Quartier P. Choice of biologic drug among children with juvenile idiopathic arthritis. Rheumatology (Oxford). 2016;55(9):1534-1535.</Citation>
</Reference>
<Reference>
<Citation>Lee S, Moon JS, Lee CR, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol. 2016;137(1):327-330.</Citation>
</Reference>
<Reference>
<Citation>van Leeuwen EM, Cuadrado E, Gerrits AM, Witteveen E, de Bree GJ. Treatment of intracerebral lesions with Abatacept in a CTLA4-Haploinsufficient patient. J Clin Immunol. 2018;38(4):464-467.</Citation>
</Reference>
<Reference>
<Citation>Safety and Efficacy of Abatacept for Treating Chronic Cytopenia in Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) Haploinsufficiency [Internet]. 2020 [cited March 13, 2020].</Citation>
</Reference>
<Reference>
<Citation>Lo B, Zhang K, Lu W, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436-440.</Citation>
</Reference>
<Reference>
<Citation>Alroqi FJ, Charbonnier LM, Baris S, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050-1059, e10.</Citation>
</Reference>
<Reference>
<Citation>Charbonnier LM, Janssen E, Chou J, et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol. 2015;135(1):217-227.</Citation>
</Reference>
<Reference>
<Citation>O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36(4):542-550.</Citation>
</Reference>
<Reference>
<Citation>Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and STATs. Immunity. 2012;36(4):515-528.</Citation>
</Reference>
<Reference>
<Citation>Schwartz DM, Bonelli M, Gadina M, O'Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25-36.</Citation>
</Reference>
<Reference>
<Citation>Liu L, Okada S, Kong XF, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635-1648.</Citation>
</Reference>
<Reference>
<Citation>van de Veerdonk FL, Plantinga TS, Hoischen A, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365(1):54-61.</Citation>
</Reference>
<Reference>
<Citation>Toubiana J, Okada S, Hiller J, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154-3164.</Citation>
</Reference>
<Reference>
<Citation>Flanagan SE, Haapaniemi E, Russell MA, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46(8):812-814.</Citation>
</Reference>
<Reference>
<Citation>Milner JD, Vogel TP, Forbes L, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125(4):591-599.</Citation>
</Reference>
<Reference>
<Citation>Forbes LR, Vogel TP, Cooper MA, et al. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J Allergy Clin Immunol. 2018;142(5):1665-1669.</Citation>
</Reference>
<Reference>
<Citation>Weinacht KG, Charbonnier LM, Alroqi F, et al. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol. 2017;139(5):1629-1640 e2.</Citation>
</Reference>
<Reference>
<Citation>Higgins E, Al Shehri T, McAleer MA, et al. Use of ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation. J Allergy Clin Immunol. 2015;135(2):551-553.</Citation>
</Reference>
<Reference>
<Citation>Khoury T, Molho-Pessach V, Ramot Y, et al. Tocilizumab promotes regulatory T-cell alleviation in STAT3 gain-of-function-associated multi-organ autoimmune syndrome. Clin Ther. 2017;39(2):444-449.</Citation>
</Reference>
<Reference>
<Citation>Okkenhaug K, Vanhaesebroeck B. PI3K-signalling in B- and T-cells: insights from gene-targeted mice. Biochem Soc Trans. 2003;31(Pt 1):270-274.</Citation>
</Reference>
<Reference>
<Citation>Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605-635.</Citation>
</Reference>
<Reference>
<Citation>Nunes-Santos CJ, Uzel G, Rosenzweig SD. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol. 2019;143(5):1676-1687.</Citation>
</Reference>
<Reference>
<Citation>Dornan GL, Siempelkamp BD, Jenkins ML, Vadas O, Lucas CL, Burke JE. Conformational disruption of PI3Kdelta regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Proc Natl Acad Sci U S a. 2017;114(8):1982-1987.</Citation>
</Reference>
<Reference>
<Citation>Lucas CL, Kuehn HS, Zhao F, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15(1):88-97.</Citation>
</Reference>
<Reference>
<Citation>Lucas CL, Zhang Y, Venida A, et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med. 2014;211(13):2537-2547.</Citation>
</Reference>
<Reference>
<Citation>Deau MC, Heurtier L, Frange P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2014;124(9):3923-3928.</Citation>
</Reference>
<Reference>
<Citation>Coulter TI, Chandra A, Bacon CM, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597-606 e4.</Citation>
</Reference>
<Reference>
<Citation>Elkaim E, Neven B, Bruneau J, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase delta syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138(1):210-218 e9.</Citation>
</Reference>
<Reference>
<Citation>Coulter TI, Cant AJ. The treatment of activated PI3Kdelta syndrome. Front Immunol. 2018;9:2043. https://doi.org/10.3389/fimmu.2018.02043</Citation>
</Reference>
<Reference>
<Citation>Rao VK, Webster S, Dalm V, et al. Effective "activated PI3Kdelta syndrome"-targeted therapy with the PI3Kdelta inhibitor leniolisib. Blood. 2017;130(21):2307-2316.</Citation>
</Reference>
<Reference>
<Citation>Study of Efficacy of CDZ173 in Patients With APDS/PASLI [Internet]. 2015 [cited March 14, 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT02435173</Citation>
</Reference>
<Reference>
<Citation>Heimall J. Now is the time to use molecular gene testing for the diagnosis of primary immune deficiencies. J Allergy Clin Immunol Pract. 2019;7(3):833-838.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Sacco, Keith A" sort="Sacco, Keith A" uniqKey="Sacco K" first="Keith A" last="Sacco">Keith A. Sacco</name>
</region>
<name sortKey="Notarangelo, Luigi D" sort="Notarangelo, Luigi D" uniqKey="Notarangelo L" first="Luigi D" last="Notarangelo">Luigi D. Notarangelo</name>
<name sortKey="Stack, Michael" sort="Stack, Michael" uniqKey="Stack M" first="Michael" last="Stack">Michael Stack</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000033 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000033 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32738057
   |texte=   Targeted pharmacologic immunomodulation for inborn errors of immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32738057" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020